Section 2 Bending moment at fixed end of stiffener
2.2 Consider
the crown of the stiffener:
-
Consider the WR (G
c = 0,5) in compression:
|
σWR comp
|
= |
66,8 x 10–6 x 14000 x 62,865
|
Stress fraction = 58,8/147 = 0,40 hence reject.
-
Consider the UDT
(G
c = 0,54) in compression:
|
y
i
|
= |
85,305 – 22,44 – (2 x 0,979) |
|
σUDT comp
|
= |
66,8 x 10–6 x 20748 x 60,907
|
Stress fraction = 84,4/279 = 0,303 hence acceptable.
-
Consider the CSM
(G
c = 0,33) over the stiffener former in compression:
|
y
i
|
= |
(85,305 – 22,44) – (4 x 0,979) – (2 x 0,66) |
|
σCSM comp
|
= |
66,8 x 10–6 x 7200 x 57,629
|
Stress fraction = 27,7/122 = 0,227 hence acceptable.
2.3 Consider
the loaded face of the shell:
-
Consider the wet
surface CSM (G
c = 0,286) in tension:
|
σCSM tension
|
= |
66,8 x 10–6 x 6290 x 22,44
|
Stress fraction = 9,4/91 = 0,10 hence acceptable.
Due to such a low stress fraction the adjacent CSM (G
c = 0,33) will also be acceptable.
-
Consider the WR (G
c = 0,5) in tension:
|
y
i
|
= |
22,44 – 1,112 – 0,625 |
|
σWR tension
|
= |
66,8 x 10–6 x 14500 x 20,703
|
Stress fraction = 20,05/190 = 0,105 hence acceptable.
2.4 However, the
conclusion is that the compressive stress fraction in the WR in the
crown of the stiffener is unacceptable. A number of options exist,
which include:
-
The use of higher strength
materials such as carbon fibre or aramid reinforcements.
-
Add UDT reinforcements
in the crown of the stiffener.
-
Laminate local collars
at the end of the stiffeners to increase the section stiffness. This
is usually labour intensive and not weight efficient.
2.6 Recalculation
of stress in the WR reinforcement in the stiffener crown using the
revised section stiffness of 5200996 Ncm/mm2:
Consider the WR (G
c = 0,5)
in the crown of the stiffener in compression:
|
σWR comp
|
= |
56,09 x 10–6 x 14000 x 61,7
|
Stress fraction = 48,4/147 = 0,329 hence acceptable.
2.7 Re-consider
the outermost UDT (G
c = 0,54) in compression:
|
y
i
|
= |
86,625 – 24,926 – 0,979 |
|
σUDT comp
|
= |
56,07 x 10–6 x 20748 x 60,720
|
Stress fraction = 70,66/279 = 0,25 hence acceptable.
Table 5.2.1 Revised tabulation of 'top-hat'
stiffener calculations including additional uni-directional reinforcements
|
|
Ply No.
|
Description
|
G
c
|
Weight
|
t
|
Breadth,
|
Lever @
|
E
|
t.b
|
E.t.b
|
E.t.b.x
|
I
|
EI @
|
| (g/m2)
|
(mm)
|
b (mm)
|
base, x (mm)
|
(N/mm2)
|
base
|
base
|
Dry
see Note
|
1
|
WR
|
0,5
|
800
|
0,979
|
80
|
86,136
|
14000
|
78,32
|
1096480
|
94445853
|
581087,7
|
8135228350
|
|
|
2
|
UDT
|
0,54
|
600
|
0,660
|
80
|
85,316
|
20748
|
52,80
|
1095494
|
93463200
|
384323,6
|
7973946157
|
|
|
3
|
WR
|
0,5
|
600
|
0,979
|
80
|
84,497
|
14000
|
78,32
|
1096480
|
92648722
|
559184,3
|
7828580341
|
|
|
4
|
UDT
|
0,54
|
600
|
0,660
|
80
|
83,677
|
20748
|
52,80
|
1095494
|
91667685
|
369699,1
|
7670516637
|
|
|
5
|
UDT
|
0,54
|
600
|
0,660
|
80
|
83,017
|
20748
|
52,80
|
1095494
|
90944659
|
363890,1
|
7549992490
|
|
|
6
|
WR
|
0,5
|
800
|
0,979
|
80
|
82,198
|
14000
|
78,32
|
1096480
|
90127915
|
529169,8
|
7408376853
|
|
|
7
|
UDT
|
0,54
|
600
|
0,660
|
80
|
81,378
|
20748
|
52,80
|
1095494
|
89149143
|
349663,5
|
7254818749
|
|
|
8
|
WR
|
0,5
|
800
|
0,979
|
80
|
80,559
|
14000
|
78,32
|
1096480
|
88330784
|
508277,4
|
7115883045
|
|
|
9
|
CSM
|
0,33
|
450
|
0,937
|
80
|
79,601
|
7200
|
74,96
|
539712
|
42961345
|
474970,0
|
3419784035
|
|
|
10
|
web
|
0,5
|
–
|
66,850
|
9,706
|
45,707
|
12687
|
648,85
|
8231910
|
376255932
|
1597160,7
|
20263177372
|
|
|
11
|
bonding
|
0,5
|
–
|
3,150
|
170,000
|
10,707
|
14500
|
535,50
|
7764750
|
83137178
|
61832,4
|
896570245
|
|
|
12
|
WR
|
0,5
|
800
|
0,979
|
302
|
8,643
|
14500
|
295,66
|
4287041
|
37050752
|
22107,1
|
320553529
|
|
|
13
|
CSM
|
0,33
|
300
|
0,625
|
302
|
7,840
|
6950
|
188,75
|
1311813
|
10285266
|
11609,3
|
80684330
|
|
|
14
|
WR
|
0,5
|
800
|
0,979
|
302
|
7,039
|
14500
|
295,66
|
4287041
|
30174338
|
14670,7
|
212724485
|
|
|
15
|
CSM
|
0,33
|
300
|
0,625
|
302
|
6,236
|
6950
|
188,75
|
1311813
|
8181119
|
7347,4
|
51064249
|
|
|
16
|
WR
|
0,5
|
800
|
0,979
|
302
|
5,435
|
14500
|
295,66
|
4287041
|
23297924
|
8755,5
|
126954976
|
|
|
17
|
CSM
|
0,33
|
300
|
0,625
|
302
|
4,632
|
6950
|
188,75
|
1311813
|
6076971
|
4056,7
|
28194272
|
|
|
18
|
WR
|
0,5
|
800
|
0,979
|
302
|
3,831
|
14500
|
295,66
|
4287041
|
16421511
|
4361,7
|
63245002
|
|
|
19
|
CSM
|
0,33
|
300
|
0,625
|
302
|
3,028
|
6950
|
188,75
|
1311813
|
3972824
|
1737,3
|
12074400
|
|
|
20
|
WR
|
0,5
|
800
|
0,979
|
302
|
2,227
|
14500
|
295,66
|
4287041
|
9545097
|
1489,3
|
21594564
|
|
|
21
|
CSM
|
0,33
|
300
|
0,625
|
302
|
1,424
|
6950
|
188,75
|
1311813
|
1868677
|
389,2
|
2704632
|
Wet
see Note
|
22
|
CSM
|
0,286
|
450
|
1,112
|
302
|
0,556
|
6290
|
335,82
|
2112333
|
1174457
|
138,4
|
870664
|
| TOTALS
|
|
|
|
|
86,625
|
|
|
|
4541,65
|
55410871
|
1381181352
|
|
86437539378
|
Note Position of neutral axis above base 24,926 mm above base Tensile modulus of elasticity
of section 12201 N/mm2
Note Stiffness EI of section about NA = 5200996 N
cm4/mm2
|
2.8 The example
demonstrates that the additional two UDT’s in the crown increases
the section stiffness by 19 per cent and is accompanied by a movement
in the neutral axis from 22,44 – 24,926 mm above the base. The
stress fraction in the woven roving in the crown is reduced from 0,4
to 0,329 and meets the Rule requirement of 0,33.
2.9 Considerable care must be exercised when additional
material radically affects the position of the neutral axis. For this
reason the stress in the outermost UDT’s has also been re-calculated
and found to be satisfactory.
2.10 Where aramid
reinforcements are being used then special consideration must be given
to the compressive properties. For comparison purposes aramid reinforcements,
at a fibre content of 0,45, typically have the following properties:
|
|
Tension
|
Compression
|
| Ultimate strength
(N/mm2)
|
300
|
100
|
| Elastic modulus (N/mm2)
|
21000
|
17000
|
2.11 The radical
reduction in ultimate compressive strength may prove to be unsuitable
in the crown of the stiffener at the end or in the panel at mid span.
Designs which feature aramid fibres in the outer plies of the panel,
in an attempt to make use of the superior impact properties, must
be checked at mid span for compression in the individual layers. This
also applies to hybrid reinforcements containing aramid fibres. These
reinforcements have one off properties of higher than one of the constituent
fibres however, in service the individual allowable strains for each
fibre reinforcement should not be exceeded.
2.12 In accordance
with Pt 8, Ch 3, 1 General of the Rules
for Special Service Craft, it is of paramount importance that the
strain compatibility of the component materials is carefully considered.
2.13 Consider
typical values of apparent strain, ∊a' at failure
for the following materials in laminate form:
|
|
Tension
|
Compression
|
| ‘E’ glass
|
1,3%
|
1,05%
|
| Carbon fibre
|
0,9%
|
0,55%
|
| Aramid fibre
|
1,3%
|
0,60%
|
2.14 The actual
strain permissible is controlled by the material with the lowest apparent
strain. The level of strain depends upon whether the reinforcements
are in tension or compression and depends on their relative positions
within the laminate. Consequently if, for example, a carbon fibre
reinforcement is used in the crown of the stiffener then the compression
strain must be constrained to a maximum of 0,33 x 0,55 per cent, i.e.
0,297 per cent. Therefore, the corresponding allowable stress in the
other reinforcements must be related to the strain in the reinforcement
relative to its position away from the neutral axis and that of the
carbon fibre reinforcement, e.g.:
2.15 Other materials
incoporated into stiffening members requiring strain compability consideration
are plywoods, timbers, etc. which have very differing strains at failure
dependent upon the direction of the grain.
|