Clasification Society Rulefinder 2020 - Version 9.33 - Fix
Common Structural Rules - Common Structural Rules for Bulk Carriers and Oil Tankers, January 2019 - Part 1 General Hull Requirements - Chapter 4 Loads - Section 5 External Loads - 1 Sea Pressure |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() 1 Sea Pressure1.1 Total pressure 1.1.1 The external pressure Pex at any load point of the hull, in kN/m2, for the static (S) design load scenarios, is to be taken as: Pex = PS but not less than 0. The total pressure Pex at any load point of the hull for the static plus dynamic (S+D) design load scenarios, is to be derived from each dynamic load case and is to be taken as: Pex = PS + PW but not less than 0. where: PS : Hydrostatic pressure, in kN/m2, defined in [1.2]. PW : Wave pressure, in kN/m2, is defined in [1.3]. 1.2 Hydrostatic pressure 1.2.1 The hydrostatic pressure, PS at any load point, in kN/m2, is obtained from Table 1. See also Figure 1. Table 1 : Hydrostatic pressure, PS
Figure 1 : Hydrostatic pressure, PS ![]() 1.3 External dynamic pressures for strength assessment 1.3.1 General The hydrodynamic pressures for each dynamic load case defined in Ch 4, Sec 2, [2] are defined in [1.3.2] to [1.3.8]. 1.3.2 Hydrodynamic pressures for HSM load cases The hydrodynamic pressures, PW, for HSM-1 and HSM-2 load cases, at any load point, in kN/m2, are to be obtained from Table 2. See also Figure 2 and Figure 3. Table 2 : Hydrodynamic pressures for HSM load cases
where: fnl : Coefficient considering non-linear effects, to be
taken as:
fyz : Girth distribution coefficient, to be taken as:
fh : Coefficient to be taken as:
ka : Amplitude coefficient in the longitudinal direction
of the ship, to be taken as:
λ : Wave length of the dynamic load case, in m, to be taken as:
kp : Phase coefficient to be obtained from Table 3. Intermediate values are to be interpolated. Table 3 : kp values for HSM load cases
Figure 2 : Transverse distribution amidships of dynamic pressure for HSM-1, HSA-1 and FSM-1 load cases ![]() Figure 3 : Transverse distribution amidships of dynamic pressure for HSM-2, HSA-2 and FSM-2 load cases ![]() 1.3.3 Hydrodynamic pressures for HSA load cases The hydrodynamic pressures, PW, for HSA-1 and HSA-2 load cases at any load point, in kN/m2, are to be obtained from Table 4. See also Figure 2 and Figure 3. Table 4 : Hydrodynamic pressures for HSA load cases
where: fnl : Coefficient considering non-linear effects, to be taken as defined in [1.3.2]. fyz : Girth distribution coefficient, to be taken as:
fh : Coefficient to be taken as:
ka : Amplitude coefficient in the longitudinal direction of the ship, to be taken as defined in [1.3.2]. λ : Wave length of the dynamic load case, in m, to be taken as:
kp : Phase coefficient to be obtained from Table 5. Intermediate values are to be interpolated. Table 5 : kp values for HSA load cases
1.3.4 Hydrodynamic pressures for FSM load cases The hydrodynamic pressures, PW, for FSM-1 and FSM-2 load cases, at any load point, in kN/m2, are to be obtained from Table 6. See also Figure 2 and Figure 3. Table 6 : Hydrodynamic pressures for FSM load cases
where: fnl : Coefficient considering non-linear effects, to be
taken as:
fyz : Girth distribution coefficient, to be taken as:
fh : Coefficient to be taken as:
ka : Amplitude coefficient in the longitudinal direction of
the ship, to be taken as:
λ : Wave length of the dynamic load case, in m, to be taken as:
kp : Phase coefficient to be obtained from Table 7. Intermediate values are to be interpolated. Table 7 : kp values for FSM load cases
1.3.5 Hydrodynamic pressures for BSR load cases The wave pressures, PW, for BSR-1 and BSR-2 load cases, at any load point, in kN/m2, are to be obtained from Table 8. See also Figure 4 and Figure 5. Table 8 : Hydrodynamic pressures for BSR load cases
where:
fnl : Coefficient considering non-linear effect, to be
taken as:
λ : Wave length of the dynamic load case, in m, to be taken as:
Figure 4 : Transverse distribution of dynamic pressure for BSR-1P (left) and BSR-1S (right) load cases ![]() Figure 5 : Transverse distribution of dynamic pressure for BSR-2P (left) and BSR-2S (right) load cases ![]() 1.3.6 Hydrodynamic pressures for BSP load cases The wave pressures, PW, for BSP-1 and BSP-2 load cases, at any load point, in kN/m2, are to be obtained from Table 9. See also Figure 6 and Figure 7. Table 9: Hydrodynamic pressures for BSP load cases
where: λ : Wave length of the dynamic load case, in m, to be taken as:
fyz : Girth distribution coefficient, to be obtained from Table 10. Table 10 : Girth distribution coefficient, fyz for BSP load cases
fnl : Coefficient considering non-linear effect, to be
taken as:
Figure 6 : Transverse distribution of dynamic pressure for BSP-1P (left) and BSP-1S (right) load cases ![]() Figure 7 : Transverse distribution of dynamic pressure for BSP-2P (left) and BSP-2S (right) load cases ![]() 1.3.7 Hydrodynamic pressures for OST load cases The wave pressures, PW, for OST-1 and OST-2 load cases, at any load point are to be obtained, in kN/m2, from Table 11. See also Figure 8 and Figure 9. Figure 8 : Transverse distribution of dynamic pressure amidships for OST-1P (left) and OST-1S (right) load cases ![]() Figure 9 : Transverse distribution of dynamic pressure amidships for OST-2P (left) and OST-2S (right) load cases ![]() Table 11 : Hydrodynamic pressures for OST load cases
where: fyz : Girth distribution coefficient, to be obtained from Table 12. fnl : Coefficient considering non-linear effect, to be taken as:
λ : Wave length of the dynamic load case, in m, to be taken as:
ka : Amplitude coefficient in the longitudinal direction of the ship, to be obtained from Table 13. kp : Phase coefficient to be obtained from Table 14. Intermediate values are to be interpolated. Table 12 : Girth distribution coefficient, fyz for OST load cases
Table 13 : ka values for OST load cases
Table 14 : kp values for OST load cases
1.3.8 Hydrodynamic pressures for OSA load cases The wave pressures, PW, for OSA-1 and OSA-2 load cases, at any load point, in kN/m2, are to be obtained from Table 15. See also Figure 10 and Figure 11. Table 15 : Hydrodynamic pressures for OSA load cases
where: λ : Wave length of the dynamic load case, in m, to be taken as:
fnl : Coefficient considering non-linear effect, to be taken as:
fyz : Girth distribution coefficient, to be obtained from Table 16. ka : Amplitude coefficient in the longitudinal direction of the ship, to be obtained from Table 17. kp : Phase coefficient to be obtained from Table 18. Intermediate values are to be interpolated. Table 16 : Girth distribution coefficient, fyz for OSA load cases
Table 17 : ka values for OSA load cases
Figure 10 : Transverse distribution of dynamic pressure amidships for OSA-1P (left) and OSA-1S (right) load cases ![]() Figure 11 : Transverse distribution of dynamic pressure amidships for OSA-2P (left) and OSA-2S (right) load cases ![]() Table 18 : kp values for OSA load cases
1.3.9 Envelope of dynamic pressure The envelope of dynamic pressure at any point, Pex-max, is to be taken as the greatest pressure obtained from any of the load cases determined by [1.3.2] to [1.3.8]. 1.4 External dynamic pressures for fatigue assessments 1.4.1 General The external pressure Pex at any load point of the hull for the fatigue static plus dynamic (F:S+D) design load scenario, is to be derived for each fatigue dynamic load case and is to be taken as: Pex = PS + PW but not less than 0. where: PS : Hydrostatic pressure, in kN/m2, defined in[1.2]. PW : Hydrodynamic pressure, in kN/m2, is defined in [1.4.2] to [1.4.6]. 1.4.2 Hydrodynamic pressures for HSM load cases The hydrodynamic pressures, PW, for load cases HSM-1 and HSM-2, at any load point, in kN/m2, are to be obtained from Table 19. Table 19 : Hydrodynamic pressures for HSM load cases
where: fyz : Girth distribution coefficient, to be taken as:
fh : Coefficient to be taken as:
fp : Coefficient to be taken as:
ka : Amplitude coefficient in the longitudinal direction of the ship,
to be taken as:
λ : Wave length of the dynamic load case, in m, to be taken as:
kp : Phase coefficient to be obtained from Table 20. Intermediate values are to be interpolated. Table 20 : kp values for HSM load cases
1.4.3 Hydrodynamic pressures for FSM load cases The hydrodynamic pressures, PW, for FSM-1 and FSM-2 load cases, at any load point, in kN/m2, are to be obtained from Table 21. Table 21 : Hydrodynamic pressures for FSM load cases
where: fyz : Girth distribution coefficient, to be taken as:
fh : Coefficient to be taken as:
fp : Coefficient to be taken as:
ka : Amplitude coefficient in the longitudinal direction of the ship,
to be taken as:
λ : Wave length of the dynamic load case, in m, to be taken as:
kp : Phase coefficient to be obtained from Table 22. Intermediate values are to be interpolated. Table 22 : kp values for FSM load cases
1.4.4 Hydrodynamic pressures for BSR load cases The hydrodynamic pressures, PW, for BSR-1 and BSR-2 load cases, at any load point, in kN/m2, are to be obtained from Table 23. Table 23 : Hydrodynamic pressures for BSR load cases
where:
fp : Coefficient to be taken as:
λ : Wave length of the dynamic load case, in m, to be taken as:
1.4.5 Hydrodynamic pressures for BSP load cases The wave pressures, PW, for BSP-1 and BSP-2 load cases, at any load point, in kN/m2, are to be obtained from Table 24. Table 24 : Hydrodynamic pressures for BSP load cases
where: λ : Wave length of the dynamic load case, in m, to be taken as:
fp : Coefficient to be taken as:
fyz : Girth distribution coefficient, to be obtained from Table 25. Table 25 : Girth distribution coefficient, fyz for BSP load cases
1.4.6 Hydrodynamic pressures for OST load cases The wave pressures, PW, for OST-1 and OST-2 load cases, at any load point, in kN/m2, are to be obtained from Table 26. Table 26 : Hydrodynamic pressures for OST load cases
where: fyz : Girth distribution coefficient, to be obtained from Table 27. Table 27 : Girth distribution coefficient, fyz for OST load cases
fp : Coefficient to be taken as:
λ : Wave length of the dynamic load case, in m, to be taken as:
ka : Amplitude coefficient in the longitudinal direction of the ship, to be obtained from Table 28. kp : Phase coefficient to be obtained from Table 29. Intermediate values are to be interpolated. Table 28 : ka values for OST load cases
Table 29 : kp values for OST load cases
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|